

Bridging materials

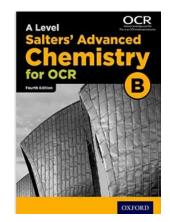
Use your GCSE resources, the internet or a chemistry textbook to help answer these questions in preparation for your AS course in Chemistry.

Good textbooks you could use are:

The course text :

A Level Salters Advanced Chemistry for OCR B (4th ed) University of York ISBN 978-0198332909

OR

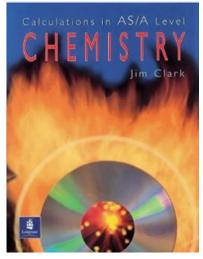

Advanced Chemistry for you Lawrie Ryan (2015 edition) ISBN 978-1408527368

Useful websites include:

- 1] Chemguide : www.chemguide.co.uk
- 2] DocBrown Chemistry : www.docbrown.info/page19/Salters_GCE_chem_A_Level_2015.htm
- 3] ChemRevise (N. Goaby) : www.chemrevise.org/ocr-revision-guides

Hartismere bridging materials can be found on the school website.

Search for item number : 29071



ESSENTIAL PURCHASE:

CGP Revision Guide New A-Level Chemistry : OCR B Year 1 & 2 Complete Revision & Practice, ISBN 978-1782943037

.The main course text will be available to students free of charge in September when starting the course.

You will also be provided with a copy of "Calculations in AS/A Level Chemistry" By Jim Clark (the person behind the "Chemguide" website)

We have copies of other textbooks students may borrow to assist with their independent study.

The CGP Revision guide book is vital – Copies will be available to order through school in September

If you would like more questions feel free to browse the OCR website and look at past papers from the old specification.

Useful information and activities

Greek letters

Greek letters are used often in science. They can be used as symbols for numbers (such as π = 3.14...), as prefixes for units to make them smaller (eg μ m = 0.000 000 001 m) or as symbols for particular quantities (such as λ which is used for wavelength). The Greek alphabet is shown below.

Α	α	alpha	Ν	ν	nu
В	β	beta	[I]	لاح	ksi
Γ	γ	gamma	0	0	omicron
Δ	δ	delta	П	π	рі
E	3	epsilon	Р	ρ	rho
Ζ	ζ	zeta	Σ	ς or $σ$	sigma
Н	η	eta	Т	τ	tau
Θ	θ	theta	Y	υ	upsilon
Ι	l	iota	Φ	φ	phi
K	к	kappa	Х	χ	chi
Λ	λ	lambda	Ψ	ψ	psi
Μ	μ	mu	Ω	ω	omega

Activity 1

A lot of English words are derived from Greek ones, but it's difficult to see as the **alphabet is so different**.

Many of the Greek letters are pronounced like the start of their name. For example, omega is pronounced "o", sigma is pronounced "s" and lambda is pronounced "l".

See if you can work out what the following Greek words mean by comparing the phonetic spelling with similar English words.

Πυθαγόρας	Name of a mathematician
Ωκεανος	Atlantic, Pacific or Arctic
μόνος	Single
Τηλε	Far or distant
Τρωγλοδύτης	Cave dweller

SI units

Every measurement must have a size (eg 2.7) and a unit (eg metres or °C). Sometimes there are different units available for the same type of measurement, for example ounces, pounds, kilograms and tonnes are all used as units for mass.

To reduce confusion and to help with conversion between different units, there is a standard system of units called the SI units which are used for most scientific purposes.

These units have all been defined by experiment so that the size of, say, a metre in the UK is the same as a metre in China.

The seven 51 base diffes a			
Physical quantity	Usual quantity symbol	Unit	Abbreviation
mass	т	kilogram	kg
length	<i>l</i> or <i>x</i>	metre	m
time	t	second	s
electric current	Ι	ampere	А
temperature	Т	kelvin	К
amount of substance	N	mole	mol
luminous intensity	(not used at A-level)	candela	cd

The seven SI base units are:

All other units can be derived from the SI base units.

For example, area is measured in square metres (written as m^2) and speed is measured in metres per second (written as ms^{-1}).

It is not always appropriate to use a full unit. For example, measuring the width of a hair or the distance from Manchester to London in metres would cause the numbers to be difficult to work with.

Prefixes are used to multiply each of the units. You will be familiar with centi (meaning 1/100), kilo (1000) and milli (1/1000) from centimetres, kilometres and millimetres.

There is a wide range of prefixes. The majority of quantities in scientific contexts will be quoted using the prefixes that are multiples of 1000. For example, a distance of 33 000 $\rm m$ would be quoted as 33 km.

The most common prefixes you will encounter are:

Prefix	Symbol	Multip	ication factor	
Tera	Т	10 ¹²	1 000 000 000 000	
Giga	G	10 ⁹	1 000 000 000	
Mega	М	10 ⁶	1 000 000	
kilo	k	10 ³	1000	
deci	d	10-1	0.1	1/10
centi	c	10-2	0.01	1/100
milli	m	10 ⁻³	0.001	1/1000
micro	μ	10 ⁻⁶	0.000 001	1/1 000 000
nano	n	10 ⁻⁹	0.000 000 001	1/1 000 000 000
pico	р	10 ⁻¹²	0.000 000 000 001	1/1 000 000 000 000
femto	f	10 ⁻¹⁵	0.000 000 000 000 001	1/1 000 000 000 000 000

Activity 2
Which SI unit and prefix would you use for the following quantities?
1. The mass of water in a test tube.
2. The time taken for a solution to change colour.
3. The radius of a gold atom.
4. The volume of water in a burette.
5. The amount of substance in a beaker of sugar.
6. The temperature of the blue flame from a Bunsen burner.

Sometimes, there are units that are used that are not combinations of SI units and prefixes. These are often multiples of units that are helpful to use. For example, one litre is 0.001 m^3 .

Activity 3 Rewrite the following in SI units. 1. 5 minutes 2. 2 days 3. 5.5 tonnes

ſ		
	Activi	ity 4
	Rewrit	e the following quantities.
	1.	0.00122 metres in millimetres
	2.	104 micrograms in grams
	_	
	3.	1.1202 kilometres in metres

4. 70 decilitres in millilitres

5. 70 decilitres in litres

6. 10 cm^3 in litres

Important vocabulary for practical work

Activity 5	Join the boxes to link the word to its definition.
Accurate	A statement suggesting what may happen in the future.
Data	An experiment that gives the same results when a different person carries it out, or a different technique or set of equipment is used.
Precise	A measurement that is close to the true value.
Prediction	An experiment that gives the same results when the same experimenter uses the same method and equipment.
Range	Physical, chemical or biological quantities or characteristics.
Repeatable	A variable that is kept constant during an experiment.
Reproducible	A variable that is measured as the outcome of an experiment.
Resolution	This is the smallest change in the quantity being measured (input) of a measuring instrument that gives a perceptible change in the reading.
Uncertainty	The interval within the true value can be expected to lie.
Variable	The spread of data, showing the maximum and minimum values of the data.
Control variable	Measurements where repeated measurements show very little spread.
Dependent variable	Information, in any form, that has been collected.

Precise language

It is essential at AS and A-level to use precise language when you write reports and when you answer examination questions. You must always demonstrate that you understand a topic by using the correct and appropriate terms.

For example, you should take care when discussing bonding to refer to the correct particles and interactions between them.

Also, when discussing the interaction between particles in an ionic solid, you would demonstrate a lack of understanding if you referred to the particles as atoms or molecules instead of ions or the interaction between these ions as intermolecular forces rather than electrostatic forces. In this case, use of the incorrect terms would result in the loss of all the marks available for that part of a question.

Take care also to use the word 'chloride' and not 'chlorine' when referring to the ions in a compound such as sodium chloride. The word 'chlorine' should only be **used for atoms or molecules of the element.**

The periodic table

The periodic table of elements is shown on the back page of this booklet. The A-level course will build on what you've learned in your GCSE studies.

Activity 6

On the periodic table on the following page:

- Draw a line showing the metals and non-metals.
- Colour the transition metals blue.
- Colour the halogens yellow.
- Colour the alkali metals red.
- Colour the noble gases green.
- Draw a blue arrow showing the direction of periods.
- Draw a red arrow showing the direction of groups.
- Draw a blue ring around the symbols for all gases.
- Draw a red ring around the symbols for all liquids.

-	2											e	4	5	9	7	0
(1)	(2)			Key			1.0 Hydrogen 1					(13)	(14)	(15)	(16)	(17)	(18) 4.0 He helium 2
	9.0 Be		relat	relative atomic mass symbol	mass							10.8 B	12.0 C	14.0 N	16.0 0	19.0 F	20.2 Ne
lithium 3	beryllium 4		atomic	atomic (proton) number	umber							boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	10 10
	24.3 Mg											27.0 Al	28.1 Si	31.0 P	32.1 S	35.5 CI	39.9 Ar
11 r	magnesium 12	(3)	(4)	(2)	(9)	(2)	(8)	(6)	(10)	(11)	(12)	aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39.1 K	40.1 Ca	45.0 Sc	47.9 Ti	50.9	52.0 Cr	54.9 Mn	55.8 Fe	58.9 Co	58.7 Ni	63.5 Cu	65.4 Zn	69.7 Ga	72.6 Ge	74.9 As	79.0 Se	79.9 Br	83.8 K
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	Ε	manganese 25	non 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85.5 Rb	87.6 Sr	88.9 Y	91.2 Zr	92.9 Nb		[88] C	101.1 Ru	102.9 Rh	106.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9	131.3 Xe
F	strontium 38	yttrium 39	zirconium 40	-	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	cadmium 48	Indium 49	fi 20	antimony 51	tellurium 52	iodine 53	xemon 54
132.9 Cs	137.3 Ba	138.9 La *	178.5 Hf	180.9 Ta	183.8 W	186.2 Re	190.2 Os	192.2 Ir	195.1 Pt	197.0	200.6 Ha	204.4 TI	207.2 Pb	209.0 Bi	[209]	[210] At	[222] Rn
caesium 55		lanthanum 57	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	plog	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr francium 87	[226] Ra radium 88	Ac † actinium 89	[267] Rf rutherbrdum 104	[268] Db dubnium 105	[271] Sg seaborgium 106		[270] Hs hassium 108	[276] Mt 109	[281] DS damstadfum 110	[280] Rg 111	Eler	Elements with atomic numbers 112-116 have been reported but not fully authenticated	atomic num not fi	c numbers 112-116 hav	16 have be icated	en reporte	put
				140.1 Ce	140.9 Pr	144.2 Nd	[145] Pm	150.4 Sm	152.0 Eu	157.3 Gd	158.9 Tb	162.5 DV	164.9 Ho	167.3 Er	168.9 Tm	173.1 Yb	175.0 Lu
* 58 - 71 Lanthanides	Lanthar	ides		3	praseodymium neodymium 59 60		promethium 61	samanum 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70	Iutetium 71
† 90 - 103 Actinides	3 Actinic	les		232.0 Th thorium 90	231.0 Pa protactinium 91	238.0 U uranium 92	[237] Np neptunium 93	[244] Pu plutonium 94	[243] Am americium 95	[247] Cm ourium 96	[247] BK berkelium 97	[251] Cf californium 98	[252] Es einsteinium 99	[257] Fm femium 100	[258] Md mendelevum 101	[259] No 102	[262] Lr lawrencium 103

Activity 7

Use the periodic table to find the following:

- 1. The atomic number of: osmium, sodium, lead, chlorine.
- 2. The relative atomic mass of: helium, barium, europium, oxygen.

3. The number of protons in: mercury, iodine, calcium.

4. The symbol for: gold, lead, copper, iron.

5. The name of: Sr, Na, Ag, Hg.

6. THINK can be written using a combination of the symbols for Thorium, Indium and Potassium (ThINK). Which combinations of element symbols could be used to make the following words?

AMERICA, FUN, PIRATE, LIFESPAN, FRACTION, EROSION, DYNAMO

Activity 8: research activity

Research either:

The history of the periodic table

OR

The history of models of atomic structure.

Present your findings as a simple timeline. You should include the work of at least four people. For each, explain what evidence or experiments they used and how this changed the understanding of chemistry.

Relative atomic mass (A_r)

If there are several isotopes of an element, the relative atomic mass will take into account the proportion of atoms in a sample of each isotope.

For example, chlorine gas is made up of 75% of chlorine-35 ${}^{35}_{17}Cl$ and 25% of chlorine- 37 ${}^{37}_{17}Cl$.

The relative atomic mass of chlorine is therefore the mean atomic mass of the atoms in a sample, and is calculated by:

$$A_r = \left(\frac{75.0}{100} \times 35\right) + \left(\frac{25.0}{100} \times 37\right) = 26.25 + 9.25 = 35.5$$

Activity 9

1. What is the relative atomic mass of Bromine, if the two isotopes, ⁷⁹Br and ⁸¹Br, exist in equal amounts?

2. Neon has three isotopes. ²⁰Ne accounts for 90.9%, ²¹Ne accounts for 0.3% and the last 8.8% of a sample is ²²Ne. What is the relative atomic mass of neon?

3. Magnesium has the following isotope abundances: ²⁴Mg: 79.0%; ²⁵Mg: 10.0% and ₂₆Mg: 11.0%. What is the relative atomic mass of magnesium?

Harder:

4.	Boron has two isotopes, ¹⁰ B and ¹¹ B. The relative atomic mass of boron is 10.8. What are the
percen	tage abundances of the two isotopes?

5. Copper's isotopes are ⁶³Cu and ⁶⁵Cu. If the relative atomic mass of copper is 63.5, what are the relative abundances of these isotopes?

Relative formula mass (M_r)

Carbon dioxide, CO_2 has 1 carbon atom ($A_r = 12.0$) and two oxygen atoms ($A_r = 16.0$). The relative formula mass is therefore

 $M_{\rm r} = (12.0 \times 1) + (16.0 \times 2) = 44.0$

Magnesium hydroxide Mg(OH)₂ has one magnesium ion ($A_r = 24.3$) and two hydroxide ions, each with one oxygen ($A_r = 16.0$) and one hydrogen ($A_r = 1.0$).

The relative formula mass is therefore:

 $(24.3 \times 1) + (2 \times (16.0 + 1.0)) = 58.3$

Activity 10

Calculate the relative formula mass of the following compounds:

- 1. Magnesium oxide MgO
- 2. Sodium hydroxide NaOH
- 3. Copper sulfate CuSO₄
- 4. Ammonium chloride NH₄Cl
- 5. Ammonium sulfate (NH₄)₂SO₄

Common ions

Positive io	ns (cations)	Negative io	ns (anions)
Name	Symbol	Name	Symbol
Hydrogen	H⁺	Hydroxide	OH.
Sodium	Na⁺	Chloride	CI [.]
Lithium	Li+	Bromide	Br ⁻
Silver	Ag⁺	Oxide	O ²⁻
Magnesium	Mg ²⁺	Hydrogencarbonate	HCO₃ ⁻
Calcium	Ca ²⁺	Nitrate	NO ₃ -
Zinc	Zn ²⁺	Sulfate	SO 4 ²⁻
Aluminium	Al ³⁺	Carbonate	CO ₃ ²⁻
Ammonium	NH4 ⁺	Phosphate	PO4 ³⁻

Some elements have more than one charge. For example, iron can form ions with a charge of +2 or +3. Compounds containing these are named Iron(II) and Iron(III) respectively.

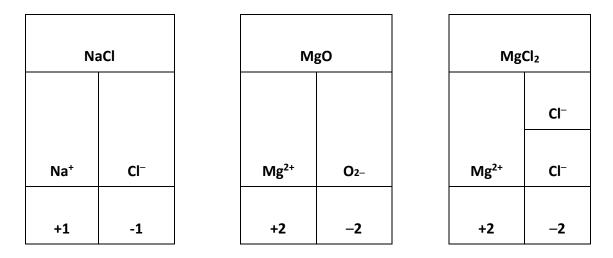
Other common elements with more than one charge include:

Chromium(II) and chromium(III)

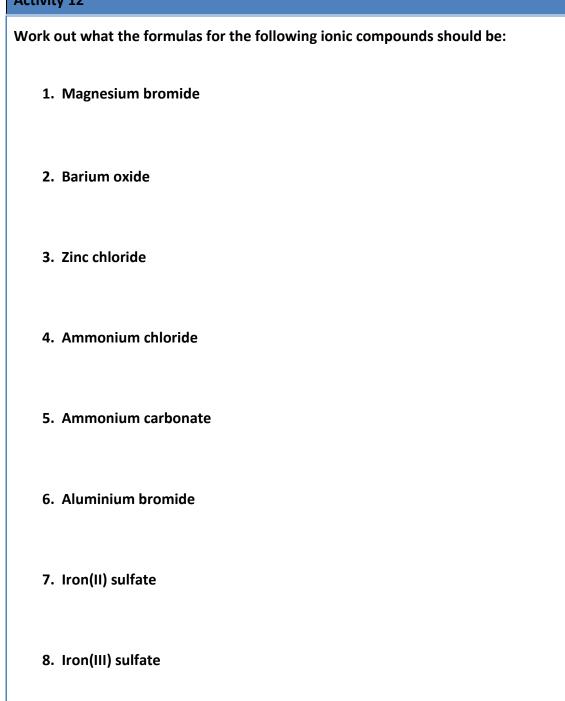
Copper(I) and copper(II)

Lead(II) and lead(IV)

Activity 11


On the periodic table on the following page, colour elements that form one atom ions (eg Na⁺ or O^{2-}) according to the following key:

Charge	Colour
+1	red
+2	yellow
+3	green
-1	blue
-2	brown


			ŝ(_	5					
0	(18) 4.0 Hetium 2	20.2 Ne 10	39.9 Ar argon	83.8 Kr	36 36	131.3 Xe	54	[222] Rn	radon 86	1 but	175.0 Lu lutetium 71	[262] L L lawrencium 103	
7	(17)	19.0 F fluorine 9	35.5 CI chlorine 17	79.9 Br	35	126.9	53	[210] At	astatine 85	en reporte	173.1 Yb ytterbium 70	[259] No 102	
9	(16)	16.0 O oxygen 8	32.1 Suffur 16	79.0 Se	34	127.6 Te	tellurium 52	[209]	polonium 84	6 have bee ated	168.9 Tm thulium 69	[258] Md mandeevium 101	
2	(15)	14.0 N nitrogen 7	31.0 Phosphorus 15	74.9 As	arsenc 33	121.8 Sb	antimony 51	209.0 Bi		c numbers 112-116 hav not fully authenticated	167.3 Er erbium 68	[257] Fm 100	
4	(14)	12.0 C carbon 6	28.1 Silloon 14		32 32	118.7 Sn	50 th	207.2 Pb	lead 82	omic numb not full	164.9 Ho 67	[252] Es einsteinlum 99	
S	(13)	10.8 B 5	27.0 Al 13			114.8 In	49	204.4 TI	thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated	162.5 Dy dysprosium 66	[251] Cf californium e 98	
		5	(12)		Xe	112.4 Cd	cadmium 48	200.6 Hg	-	Eleme	158.9 Tb terbium dy	[247] BK berkelium ca 97	
			(11)	63.5 Cu	copper 29	107.9 Ag		197.0 Au		[280] Rg roentgenium 111	157.3 Gd gadolinium 64	[247] Carium 96	
			(10)	-		106.4 Pd	palladium 46	195.1 Pt	-	DS DS damstadfum ro 110	152.0 Eu europium ge 63	Am americium 95	
			(6)	58.9 Co	27	-	45	192.2 Ir	2002	[276] Mt meitnerium dt 109	150.4 Sm samanum 62	[244] Pu plutonium ar 94	
	1.0 hydrogen 1		(8)	Fe Fe	29 29	01.1 Ru	henium 44	190.2 Os	osmium 76	[270] Hs hassium m 108	[145] Pm promethium s 61	Page Page Page Page Page Page Page Page	
	£	6	0	e Pa	anganese 25	10 ⁸⁸	technetium n. 43	186.2 Re	-	[272] Bh bolrrium 107	-	238.0 U 92 92	
	8	ass nber	(9)	0.50 Č	24	0.00 Mo.0	molybdenum te 42	183.8 W	tungsten r 74	Sg seaborgium 106	140.9 Pr 59	231.0 Pa protactinium 91	
	Key	relative atomic mass symbol name atomic (proton) number	(5)	-	23		niobium mo 41	180.9 Ta	T3	Db Db dubnium 105	140.1 Ce cerium pa	232.0 Th Hhorium pre	
		relative S atomic ((4)	-			zirconium r 40	178.5 Hf		[267] Rf nutherfordium 104			
	100		(3)		- 12	_	yttrium zi 39	138.9 La *	F	Ac † Ac † 89	des	Se	
N	(2)	9.0 Be beryllium	24.3 Mg 12	-	2		strontium 38	137.3 Ba	-	[226] Ra s8 88	* 58 - 71 Lanthanides	† 90 - 103 Actinides	
(1	(1)	6.9 Li 3 3	23.0 Na sodium m 11		1		arbidium si 37	132.9 Cs	121	[223] Fr francium 87	58 - 71	90 - 103	

Ionic compounds must have an overall neutral charge. The ratio of cations to anions must mean that there is as many positives as negatives.

For example:

Activity 12

Diatomic molecules

A number of atoms exist in pairs as diatomic (two atom) molecules.

The common ones that you should remember are:

Hydrogen H₂, Oxygen O₂, Fluorine F₂, Chlorine Cl₂, Bromine Br₂, Nitrogen N₂ and Iodine I₂

Common compounds

There are several common compounds from your GCSE studies that have names that do not help to work out their formulas. For example, water is H₂O.

Activity 13: Research activity

What are the formulas of the following compounds?1. Methane2. Ammonia

- 3. Hydrochloric acid
- 4. Sulfuric acid
- 5. Sodium hydroxide
- 6. Potassium manganate(VII)
- 7. Hydrogen peroxide

Balancing equations

Chemical reactions never create or destroy atoms. They are only rearranged or joined in different ways.

When hydrogen and oxygen react to make water: hydrogen + oxygen **→** water

$H_2 + O_2 \rightarrow H_2O$

There are two hydrogen atoms on both sides of this equation, but two oxygen atoms on the left and only one on the right. This is not balanced.

This can be balanced by writing:

2H₂ + O₂ → 2H₂O

The reactants and products in this reaction are known and you can't change them. The compounds can't be changed and neither can the subscripts because that would change the compounds. So, to balance the equation, a number must be added in front of the compound or element in the equation. This is a coefficient. Coefficients show how many atoms or molecules there are.

Activity 14

Write balanced symbol equations for the following reactions. You'll need to use the **information on the previous pages to work out the formulas of the compounds. Remember some of the elements may be diatomic molecules.**

1. Aluminium + oxygen → aluminium oxide

2. Methane + oxygen → carbon dioxide + water

3. Aluminium + bromine \rightarrow aluminium bromide

4. Calcium carbonate + hydrochloric acid \rightarrow calcium chloride + water + carbon dioxide

5. Aluminium sulfate + calcium hydroxide → aluminium hydroxide + calcium sulfate
Harder:
6. Silver nitrate + potassium phosphate → silver phosphate + potassium nitrate
More challenging:
7.
Potassium manganate(VII) + hydrochloric acid 🗲 potassium chloride + manganese(II) chloride
+ water + chlorine

Moles

A mole is the amount of a substance that contains 6.02×10^{23} particles.

The mass of 1 mole of any substance is the relative formula mass (M_r) in grams.

Examples:

One mole of carbon contains 6.02×10^{23} particles and has a mass of 12.0 g

Two moles of copper contains 12.04×10^{23} particles, and has a mass of 127 g 1 mole of water contains 6.02×10^{23} particles and has a mass of 18 g

The amount in moles of a substance can be found by using the formula:

Amount in moles of a substance = $\frac{\text{mass of substance}}{\text{relative formula mass}}$

Activity 15

Fill in the table.

Substance	Mass of substance	Amount/moles	Number of particles
Helium			18.12 × 10 ²³
Chlorine	14.2		
Methane		4	
Sulfuric acid	4.905		

Empirical formula

If you measure the mass of each reactant used in a reaction, you can work out the ratio of atoms of each reactant in the product. This is known as the empirical formula. This may give you the actual chemical formula, as the actual formula may be a multiple of this. For example, hydrogen peroxide is H₂O₂ but would have the empirical formula HO.

Use the following to find an empirical formula:

- 1. Write down reacting masses
- 2. Find the amount in moles of each element
- 3. Find the ratio of moles of each element

Example:

A compound contains 2.232 g of ion, 1.284 g of sulfur and 1.920 g of oxygen. What is the empirical formula?

Element	Iron	Sulfur	Oxygen
mass/relative atomic mass	2.232/55.8	1.284/32.1	1.920/16.0
Amount in moles	0.040	0.040	0.120
Divide by smallest value	0.040/0.040	0.040/0.040	0.120/0.040
Ratio	1	1	3

So the empirical formula is FeSO_{3.}

If the question gives the percentage of each element instead of the mass, replace mass with the percentage of an element present and follow the same process.

Activity 16

Work out the following empirical formulas:

1. The smell of a pineapple is caused by ethyl butanoate. A sample is known to contain only 0.180 g of carbon, 0.030 g of hydrogen and 0.080 g of oxygen. What is the empirical formula of ethyl butanoate?

2. Find the empirical formula of a compound containing 0.0578 g of titanium, 0.288 g of carbon, 0.012 g of hydrogen and 0.384 g of oxygen.

3. 300 g of a substance are analysed and found to contain only carbon, hydrogen and oxygen. The sample contains 145.9 g of carbon and 24.32 g of hydrogen. What is the empirical formula of the compound?

4. Another 300 g sample is known to contain only carbon, hydrogen and oxygen. The percentage of carbon is found to be exactly the same as the percentage of oxygen. The percentage of hydrogen is known to be 5.99%. What is the empirical formula of the compound?

10
0,
+
5
(1)
ž
1
-
Φ
Elements
ш
-
of the
-
-
4
0
-
0
-
Table
-
-
0
0
0
. <u> </u>
1
d)
Periodic
-
-
Lhe
5
-

e

-

(18) 4.0 He hetium 2	19.0 20.2 He Ne Ne Ne 10	35.5 39.9 Cl Ar chlorine argon 17 18	79.9 83.8 Kr Br Krypton 35 36	0 0	[210] [222] At Rn astatine radon 85 86	eported but	173.1 175.0 Yb Lu ytterbium lutetium 70 71	[259] [262] No Lr	
(16) (16.0 O svygen 8	32.1 3 S suffur ct 16	79.0 Se selenium 34	(0 E	Po Po 84 84	6 have been r ated	168.9 Tm thulium ytts 69	[258] [
(15)	14.0 N nitrogen 7	31.0 Phosphorus 15	74.9 As arsenic 33	121.8 Sb antimony 51	209.0 Bi Bi 83	c numbers 112-116 ha not fully authenticated	167.3 Er erbium 68	[257] Fm	
(14)	12.0 C carbon 6	28.1 Silicon 14	72.6 Ge germanium 32	118.7 Sn 50	207.2 Pb lead 82	Elements with atomic numbers 112-116 have been reported but not fully authenticated	164.9 Ho holmium 67	[252] Es	
(13)	10.8 B boron 5	27.0 Al aluminium 13	69.7 Ga gallium 31	114.8 In Indium 49	204.4 TI thallium 81		nents with a	nents with a	162.5 Dy dysprosium 66
		(12)	65.4 Zn zinc 30	112.4 Cd cadmium 48	200.6 Hg mercury 80		158.9 Tb terbium 65	Bk	
		(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79	[280] Rg roentgenium 111	157.3 Gd gadolinium 64	[247] Cm	
		(10)	58.7 Ni nickel 28	106.4 Pd palladium 46	195.1 Pt platinum 78	[281] Ds damstadtum 110	152.0 Eu europium 63	[243] Am	
		(6)	58.9 Co cobalt 27	102.9 Rh thodium 45	192.2 Ir iridium 77	[276] Mt netherium 109	150.4 Sm samanum 62	[244] Pu	
1.0 hydrogen		(8)	55.8 Fe iron 26	101.1 Ru ruthenium	190.2 Os osmium 76	[270] HS hassium 108	[145] Pm promethium 61	[237] Np	
		Ø	54.9 Mn manganese 25	[98] Tc 43	186.2 Re rhenium 75	[272] Bh bohrium 107	144.2 Nd 60	238.0 U	
	mass number	(9)	52.0 Cr chromium 24	96.0 Mo Mo 42	183.8 W tungsten 74	[271] Sg seaborgium 106	140.9 Pr 59	231.0 Pa	
Key	relative atomic mass symbol name atomic (proton) number	(2)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73	[268] Db dubnium 105	140.1 Ce cerium 58	232.0 Th	
3		(4)	47.9 Ti ttanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[267] Rf rutherfordium 104			
~		(3)	45.0 Sc scandium 21	88.9 Yttrium 39	138.9 La * Ianthanum 57	Ac + actinium 89	nides	des	
(2)	9.0 Be beryllium	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium 38	137.3 Ba barium 56	[226] Ra radium 88	* 58 - 71 Lanthanides	+ 90 - 103 Actinides	
(1)	6.9 Li Ithium 3	23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb nubidium 37	132.9 Cs caesium 55	[223] Fr francium 87	58 - 7	90 - 10	

Activity 17: Equations that you've done !

Feel free to research/remind yourself. Try these questions to refresh your equations

Group 7

Q1] This is a halogen displacement reaction :

 $CI_{2 (aq)} + 2LiBr_{(aq)} \rightarrow Br_{2 (aq)} + 2LiCI_{(aq)}$

a) Why is lithium bromide used "in solution" for this reaction, as it would normally be a solid at room temperature and pressure.

b) What would you SEE happening at this reaction takes place ?

c) Suggest why chlorine is used in solution for this reaction, as chlorine is a gas ?

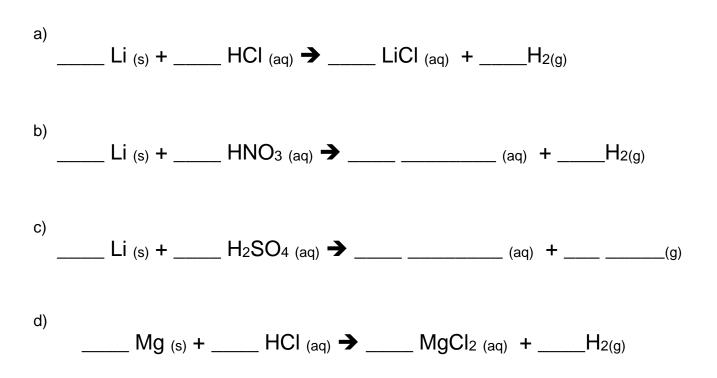
d) What is the role ("job") of lithium ions in this reaction ?

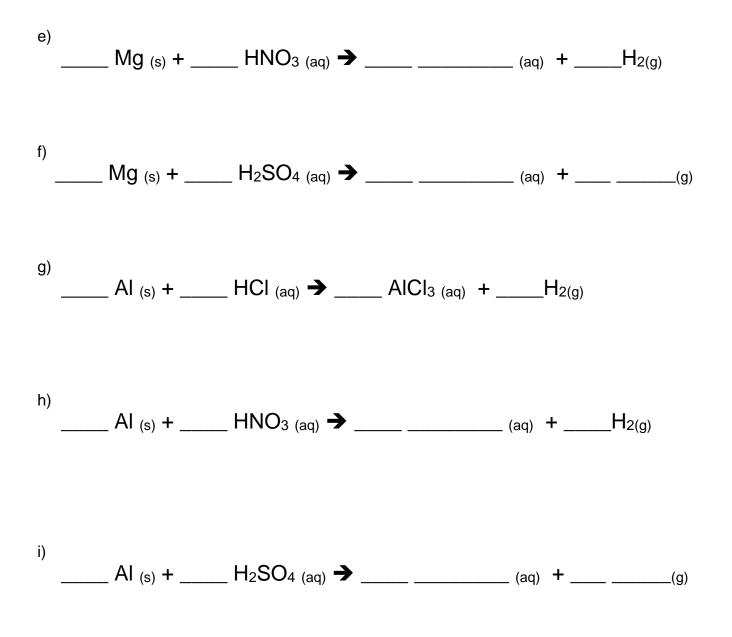
e) Write an ionic equation for this reaction by removing the "spectator ions".

f) Which is the more powerful reducing agent in this reaction CI atoms or Br⁻ ions ?
 How do you know ? (a reducing agent reduces the thing that it is reacting with by giving it electrons !)

g) Describe what you would observe if you added silver nitrate solution to the products of this reaction ?

Metal + Acid


[General equation] Metal + acid → metal salt + hydrogen


The salt depends on the acid used. HCl forms **chloride** salts H₂SO₄ forms **sulphate** salts HNO₃ forms **nitrate** salts

Q2] Select the correct formulae of the following metal salts formed in reactions with acids, by looking at the charges and getting the total + charge to equal the total - charge, from the four choices for each question

a] Potassium sulphate			
KSO ₄	K_2SO_4	K(SO ₄) ₂	K_3SO_4
b] Zinc Nitrate			
ZnNO ₃	Zn_2NO_3	Zn(NO ₃) ₂	Zn(NO ₃) ₃
c] Iron III chloride			
FeCl	Fe₃Cl	FeCl ₂	FeCl₃

Q3] Complete these metal – acid equations : Li forms 1+ ions Mg forms 2+ ions Al forms 3+ ions

Q4] You can also represent these reactions as **ionic equations** – which show more detail on what actually happened.

eg/ [full equation] $2Rb_{(s)} + 2HCl_{(aq)} \rightarrow 2RbCl_{(aq)} + H_{2(g)}$

decisions:

- the acid part of the HCI (the thing that makes HCI an acid) are the H⁺ ions.

- here CI is CI ions on the left and CI ions on the right. In other words, no change ! Spectator ionsremove them.

- have to leave the H_2 in at the end to show what happened to the H+ ions.

Answer:

[ionic equation] $2Rb + 2H^+ \rightarrow 2Rb^+ + H_2$

write ionic equations for the following metal – acid reactions:

a) [Full] $2Cs + 2HNO_3 \rightarrow 2CsNO_3 + H_2$

b) [Full] $Cu + 2HNO_3 \rightarrow Cu(NO_3)_2 + H_2$

c) [Full] $2Fe + 6HNO_3 \rightarrow 2Fe(NO_3)_3 + 3H_2$

d) [Full] 2Cs + $H_2SO_4 \rightarrow Cs_2SO_4 + H_2$

e) [Full] 2Cs + 2HCl \rightarrow 2CsCl + H₂

Acid reactions

- anything that reacts with an acid (and neutralises it) is known as a "base".

- bases include : metal elements (eg/ Cu), metal oxide compounds (eg/ CuO), metal hydroxide

compounds (eg/ $Cu(OH)_2$) and metal carbonate compounds (eg/ $CuCO_3$).

- some metal hydroxides are soluble in water. These are known as "**alkalis**". (eg/ LiOH, NaOH, KOH)
- they're all neutralisation reactions.
- in each reaction, the acid does the same thing ! It gives away H⁺ ions that turn into either H₂ gas *(reaction with metal only)* or H₂O.

 once again, the type of acid determines the type of salt formed : HCl forms chloride salts H₂SO₄ forms sulphate salts HNO₃ forms nitrate salts

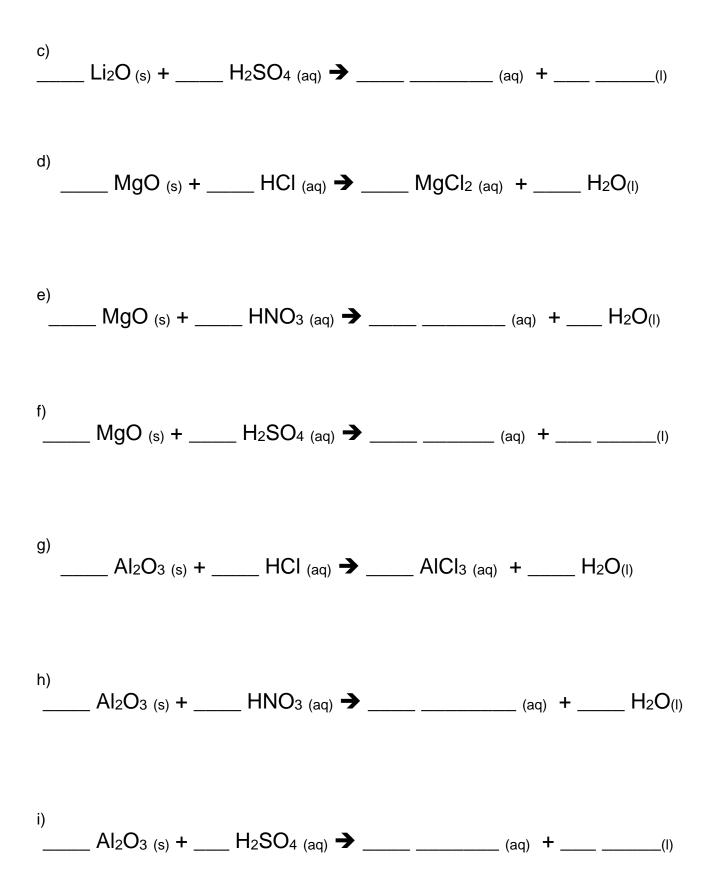
Here are the general equations for these reactions:

Metal oxide + acid → metal salt + water

(eg/ Na₂O + 2HCl \rightarrow 2NaCl + H₂O..... H₂O because 2xH from acid and O from base)

Metal hydroxide + acid → metal salt + water

(eg/ NaOH + HCl \rightarrow NaCl + H₂O H₂O because H from acid and OH from base)

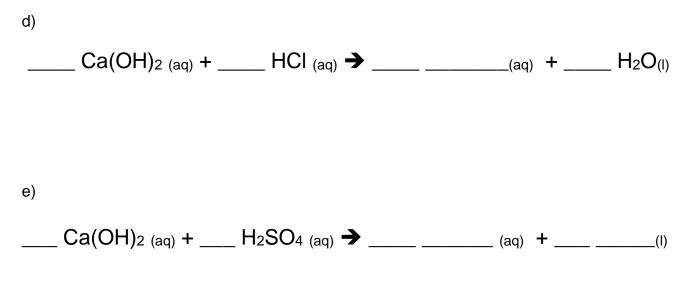

Metal carbonate + acid → metal salt + water + carbon dioxide

(eg/ Na₂CO₃ + 2HCl → 2NaCl + H₂O + CO₂)

Metal oxide + acid

Q5] Complete these equations (some just require balancing):

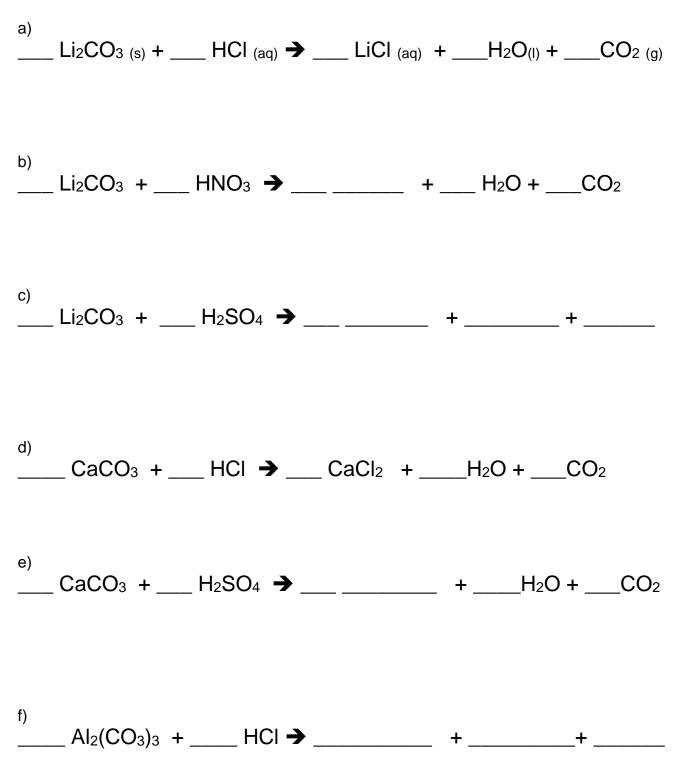
a) _____ Li₂O (s) + _____ HCl (aq) \Rightarrow _____ LiCl (aq) + _____ H₂O(l) b) _____ Li₂O + _____ HNO₃ (aq) \Rightarrow _____ (aq) + _____ H₂O(l)


Q6] Write **ionic equations** for Q5a, 5d and 5g in the space below.

Metal hydroxide + acid reactions

Q7] Complete these equations (some just require balancing):

a)	NaOH _(aq) + _	HCI _(aq)	NaCl _(aq) + _	H2O(I)
b)	NaOH +	HNO3 →	+	H₂O
c)	NaOH +	H₂SO₄ →	+	


Note : Calcium hydroxide is only sparingly soluble in water. The solution is known as limewater.

Q8] Write ionic equations for Q7a and 7b in the space below

Metal carbonate + acid reactions

Q9] Complete these equations (some just require balancing):

Q10] Write **ionic equations** for Q9a and 9d below Remember, the acid donates its H⁺, the negative ion part (the non-metal bit) of the base accepts the acids H⁺.